Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reduction of stenols to stanols in particulate matter at oxic–anoxic boundaries in sea water

Abstract

STEROIDAL alcohols (sterols) are fundamental biochemicals in eukaryotes and are indicators of organic matter sources and transformations in sea water and sediments1–3. Reduction of Δ5-stenols, the predominant biogenic sterols, to 5α(H)-stanoIs is primarily an anaerobic microbial transformation4,5. Increased stanol/stenol ratios are used as evidence of this process, for example in Recent sediments where stanol/stenol ratios are higher at lower redox potential2,6–9. The oxic nature of sea water generally seems to preclude this conversion10–12. However, increased stanol/stenol ratios can also reflect direct biogenic input of stanols or preferential degradation of stenols relative to stanols. Here I report increased 5α(H)-stanol/Δ5-stenol ratios in particulate matter at the oxic-anoxic interfaces in the water columns of the Cariaco Trench and Black Sea and attribute them to in situ microbial conversion of stenol to stanol. The extent of conversion varies with water-column redox potential: little stanol generation occurs under oxic conditions, whereas there is substantial conversion in anoxic waters. These results imply that anoxic waters, particularly near oxic–anoxic interfaces, are important sites of intense alteration of organic matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mackenzie, A. S., Brassell, S. C., Eglinton, G. & Maxwell, J. R. Science 217, 491–504 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Gagosian, R. B., Smith, S. O., Lee, C., Farrington, J. W. & Frew, N. M. in Advances in Organic Geochemistry 1979 (eds Douglas, A. G. & Maxwell, J. R.) (Pergamon, New York, 1980).

    Google Scholar 

  3. Brassell, S. C. & Eglinton, G. in Advances in Organic Geochemistry 1981 (eds Bjorøy, M. et al.) (Wiley, Chichester, 1983).

    Google Scholar 

  4. Eyssen, H. J., Parmentier, G. C., Compernoll, F. C., De Pauw, G. & Piessenes-Denet, G. Eur. J. Biochem. 36, 411–421 (1973).

    Article  CAS  Google Scholar 

  5. Rosenfeld, R. S. & Hellman, L. J. Lipid. Res. 12, 192–197 (1971).

    CAS  PubMed  Google Scholar 

  6. Gaskell, S. J. & Eglinton, G. Nature 254, 209–211 (1976).

    Article  ADS  Google Scholar 

  7. Nishimura, M. & Koyama, T. Geochim. cosmochim. Acta 41, 371–385 (1977).

    ADS  Google Scholar 

  8. Nishimura, M. Geochim. cosmochim. Acta 42, 349–357 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Nishimura, M. Geochim. cosmochim. Acta 41, 1817–1823 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Gagosian, R. B., Smith, S. O. & Nigrelli, G. E. Geochim. cosmochim. Acta 46, 1163–1172 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Wakeham, S. G. & Canuel, E. A. J. mar. Res. 46, 183–213 (1988).

    Article  CAS  Google Scholar 

  12. Wakeham, S. G. & Lee, C. Org. Geochem. 14, 83–96 (1989).

    Article  CAS  Google Scholar 

  13. Wakeham, S. G. Geochim. cosmochim. Acta 51, 3051–3069 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Wakeham, S. G. & Ertel, J. R. Org. Geochem. 13, 815–822 (1988).

    Article  CAS  Google Scholar 

  15. Goad, L. J. in Marine Natural Products, Chemical and Biological Perspectives (ed. Scheur, P. J.) (Academic, New York, 1978).

    Google Scholar 

  16. Nes, W. R. & McKean, M. L. Biochemistry of Steroids and Other Isopentenoids (University Park Press, Baltimore, 1977).

    Google Scholar 

  17. Jannasch, H. W., Trüper, H. G. & Tuttle, J. H. in The Black Sea—Geology, Chemistry and Biology Mem. No. 20 (eds Degens, E. & Ross, D.) (A. M. Ass. Petrol. Geol., Tulsa, 1974).

    Google Scholar 

  18. Karl, D. M. Limnol. Oceanogr. 23, 936–949 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Karl, D. M. & Knauer, G. A. Deep Sea Res. 31, 221–243 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Morris, I., Glover, H. E., Kaplan, W. A., Kelley, D. P. & Weightman, A. L. Microbios 42, 133–144 (1985).

    Google Scholar 

  21. Karl, D. M., LaRock, P. A. & Schulz, D. J. Deep Sea Res. 24, 105–113 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Bird, C. W., Lynch, J. M., Pirt, F. J., Brooks, C. J. W. & Middleditch, B. S. Nature 230, 473–474 (1976).

    Article  ADS  Google Scholar 

  23. Bouvier, P., Rohmer, M., Benveniste, P. & Ourisson, G. Biochem. J. 159, 267–271 (1976).

    Article  CAS  Google Scholar 

  24. Bada, J. L. Adv. Chem. Ser. 106, 309–331 (1971).

    Article  CAS  Google Scholar 

  25. Gagosian, R. B. & Heinzer, F. Geochim. cosmochim. Acta 43, 471–486 (1979).

    Article  ADS  CAS  Google Scholar 

  26. Broenkow, W. W. & Reaves, R. E. Moss Landing Mar. Lab. Tech. Publ. No. 85-1 (Moss Landing Mar. Lab., Moss Landing, 1985).

    Google Scholar 

  27. Broenkow, W. W. & Krenz, R. Moss Landing Mar. Lab. Techn. Publ. No. 82-1 (Moss Landing Mar. Lab., Moss Landing, 1982).

    Google Scholar 

  28. Broenkow, W. W., Lewitus, A. J. & Reaves, R. E. Moss Landing Mar. Lab. Tech. Publ. No. 83-1 (Moss Landing Mar. Lab., Moss Landing, 1983).

    Google Scholar 

  29. White, G., Relander, M., Postel, J. & Murray, J. W. School of Oceanography Spec. Rep. No. 109 (University of Washington, Seattle, 1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakeham, S. Reduction of stenols to stanols in particulate matter at oxic–anoxic boundaries in sea water. Nature 342, 787–790 (1989). https://doi.org/10.1038/342787a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342787a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing